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COROLLARY. If in (19) the x's are rational integers and p = (p) with
p a prime rational integer then this congruence always has k solutions for p
sufficiently large with the other conditions in Theorem II holding, k any integer.

This corollary was given by Mordell' when as+, g 0, and we include
all' solutions of (19). We considered only solutions prime to p (primitive
solutions) in our work, following the conditions (2) and (20).

1 These PROCEEDINGS, 33, 236-242 (1947). In this paper reference to previous results
was made, but an important paper by Mordell, Mathematische Zeitschrift, 37, 207 (1933)
which bore more directly on the contents, was, unfortunately, not mentioned. Other
relevant references are' Pellet, Bull. Math. Soc. France, 15, 80-93 (1886); Dickson,
Crelke, 135, 181-188 (1909); Hurwitz, Crelle, 136, 272-292 (1909); Mitchell, Ann.
Math., II, 18, 120 (1917); Davenport, Jour. London Math. Soc., 6, 49-54 (1931); Schur,
I., Jahresber. Deutsch. Math. Verein., 25, 114 (1916).

1I Cf. a paper by Hua, Loo-Keng, "On a Double Exponential Sum," soon to appear in
the Science Reports of Tsing Hua University. An abstract is given in the Science Record
of the Acad. Sinica, 1, Nos. 1-2.

2 These PROCEEDINGS, 32, 47-52 (1946).
3 Mordell's method of proof is diferent from either of those used in the present paper.
In some ways there is quite a distinction between finding the primitive solutions of an

equation in a finite field and finding all solutions. The congruence

XI2 + x22 + .. . + x,2+0 (mod 2)

has no solutions in integers prime to 2, if s is odd, but evidently has solutions for some of
the x's even. Again the congruence X7 + y7 + 1 =0 (mod 491) has no solutions in inte-
gers x and y prime to 491. But the congruence x7 + 1 _ 0 (mod 491) obviously has
solutions.
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It has long been recognized that the theorems of group theory display
a certain duality. The concept of a lattice gives a partial expression for
this duality, in that some of the theorems about groups which can be
formulated in terms of the lattice of subgroups of a group display tOe
customary lattice duality between meet (intersection) and join (union).
The duality is not always present, in the sense that the lattice dual of a
true theorem on groups need not be true; for example, a Jordan Holder
theorem holds for certain ascending well-ordered infinite composition
series, but not for the corresponding descending series.' Moreover, there
are other striking group theoretic situations where a duality is present,
but is not readily expressible in lattice-theoretic terms.
As an example, consider the direct product D = G X H of two groups
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G and H, together with its canonical homomorphisms y(g, h) = g, q(g,
h) = h into the given factors G and H. The system [y:D -+ G; v:D -÷H]
consisting of the direct product together with these homomorphisms is
characterized, up to isomorphism, by the following property: given any
other such system [,y':D' -k G, q':D' - ] for the same groups G and
H, there is one and only one homomorphism r:D' -+ D such that y' =
yTr, n' = -jr. Dually, the free product P of groups G and H is the "most
general" group generated by subgroups isomorphic to G and H, respec-
tively. This means that there are canonical homomorphisms a:G -+ P
and , -:H -+ P of the factors into the corresponding subgroups of P. This
system (P, a, (3) is characterized by. the following property: given any
system [a':G -+ P', ,B' :H - P'] there is one and only one homomorphism
o,:P -+ P' such that o-a = a', orB= ,B'. The theorem that the direct
product of any two groups exists is thus dual to the theorem asserting the
existence of the free product. The proofs of these two theorems are not
dual, but the proofs of many other formal properties are dual, as for
instance in the case of the associative law (G X H) X K-G X (H X K).
For the direct product D, the canonical homomorphisms y and tp are homo-
morphisms onto their respective ranges G and H; in the case of the free
product P the canonical homomorphisms a and (3 are isomorphisms into P.
The "dual" of a theorem about groups and homomorphisms is to be ob-
tained by inverting the direction of each homomorphism, inverting the
order of all products of homomorphisms and replacing homomorphisms
onto by isomorphisms into.
For abelian groups the duality is more marked. A free abelian group

F can be characterized in terms of homomorphisms of abelian groups by
the following property :2 for any homomorphism a: F -+ A and any second
homomorphism (3:B -+ A onto the image group A there exists a homo-
morphism y: F -* B with fly = a. (The corresponding characterization
applies also to free non-abelian groups.) An infinitely divisible abelian
group D is one in which there exists for each d eD and each integer m a
solution x of the equation mx = d. Any homomorphism of an abelian
group A into D can be extended to any abelian group B containing A.
This property characterizes the infinitely divisible abelian groups; it may
be stated in a form dual to the characteristic property of free groups:
given a:A -- D and an isomorphism j3:A -> B of A into B, there exists a
y:B -+ D with -y, = a. For an abelian group, free products reduce to
direct products. If a factor group of an abelian group is a free group, it
is a direct factor. Dually, if a subgroup of an abelian group is infinitely
-divisible, it is a direct factor.

This duality for abelian groups appears in algebraic topology as a duality
between homology and cohomology groups. This phenomenon is es-
pecially striking in the axiomatic form of homology theory.3
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For locally compact topological abelian groups, the duality phenomena
can be formulated explicitly by means of character groups;4 each theorem
then gives a dual theorem about the character groups of those groups
involved in the original theorem. It is instructive to compare this f6rmula-
tion with the duality of plane projective geometry., A pole-polar re-
ciprocation gives a dual to each projective figure, comparable to the
character group of a group. Alternatively, projective geometry has an
"axiomatic" or "syntactical" duality: any theorem deducible from the
incidence axioms remains true on the interchange of the primitive terms
"point" and "line" in the statement of the theorem.
Our objective is a similar formulation of a (partial) axiomatic duality

for groups. It clearly must concern the system consisting of all groups
and all homomorphisms of one group into another. For certain other
investigations of this and similar systems, Eilenberg and the author have
introduced the notion of a category.6 A category is a class of "mappings"
(say, homomorphisms) in which the product aci of certain pairs of mappings
a and , is defined. A mapping e is called an identity if pa = a and,Bp = ,B
whenever the products in question are defined. These products must
satisfy the axioms:

(C-1). If the products -yf3 and (-y(B)a are defined, so is (ia;
(C-i'). If the products ,3a and -y(fla) are defined, so is 'y#;
(C-2). If the products ey: and ,Ba are defined, so are the products ('y#)a

and y(,Ba), and these products are equal.
(C-3). For each -y there is an identity eD such that 7yeD is defined;
(C-4). For each 'y there is an identity eR such that eRy is defined.
It follows that the identities eD and eR are unique; they may be called,

respectively, the domain and the range of the given mapping "y. A mapping
6 with a two-sided inverse is an equivalence.
These axioms are clearly self dual, and a dual theory of free and direct

products may be constructed in any category in which such products exist.
These axioms do not, however, suffice to express the duality between
"homomorphism onto" and "isomorphism into." These notions can be
formulated in terms of subgroups and factor groups; with any subgroup
S C G we can associate the identity injection i -S -- G of S into G, and with
any normal subgroup N of G we can associate the projection T:G -- GIN
mapping each element g of G into its coset gN in the factor group GIN.
We propose to axiomatize the dual notions "injection" and "projection."
A bicategory is a category with two distinguished classes of mappings,

the "injections" and the "projections," subject to the following self dual
axioms:

(BC-1). Every identity is both an injection and a projection;
(BC-2). The product of two injections (projections), when defined, is

an injection (projection).
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(BC-3). Every mapping y can be represented uniquely as a product
7 = KOr, where r is a projection, 0 an equivalence and K an injection.
A mapping of theform KO is called a mapping within (isomorphism into);

one of tke form 07r is called a mapping upon (homomorphstsm onto).
(BC-4). The product of two mappings within (upon), when defined, is a

mapping within (upon).
(BC-5). Two injections (projections) with identical domains and identical

ranges are identical.
These concepts suffice to give dual definitions of "subgroups" and

"factor groups." Thus el is a "subidentity" of p2 if there exists an injection
with domain el and range e2; this inclusion relation gives a partial order
of the identities of a bicategory. We may then define a lkttice-ordered
bicategory as any bicategory in which the subidentities and factor identities
of any given identity form a lattice under this partial order.
A group can be interpreted as a lattice-ordered bicategory with an

identity; the mappings of the category. are all equivalences, and are the
elements of the group. A lattice L can be interpreted as a lattice-ordered
bicategory in which all mappings are injections: the mappings of the
category are the pairs [a, b] with a 3 b, and with product [a, b] [b, c] =
[a, c]. Thus the concept "lattice-ordered bicategory" is a common
generalization of the notions "group" and "lattice."
We contend that most of the phenomena of universal algebra and of

(axiomatic) group duality7 have appropriate and simple formulations in
terms of lattice-ordered bicategories. In particular, for groups, one may
use the lattice-ordered bicategory of all homomorphisms of one group into
another. In this category we might interpret projection mapping to mean
any (canonical) homomorphism r: G -* GIN of a group G upon its factor
group G/N. For this interpretation the product of two projections is not
a projection (axiom BC-2 fails). This axiom might be saved by calling
a projection any product of such canonical homomorphisms T, but in this
case the projection factor 7r of any homomorphism is not unique (axiom
BC-3 fails).
This apparent difficulty can be surmounted by an attention to funda-

mentals. A factor group GIN may be described either as a group in
which the elements are cosets of N, and the equality of elements is the
equality of sets, or as a group in which the elements are the elements of
G, and the "equality" is congruence modulo N. Both approaches are
rigorous8 and can be applied systematically (and with approximately equal
inconvenience!) throughout group theory. The difficulties cited disappear
when we adopt the second point of view, and regard a group G as a system
of elements G with a reflexive symmetric and transitive "equality'" rela-
tion such that logically identical elements are equal (but not necessarily
conversely) and such that products of equal elements are equal.
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* John Simon Guggenheim Memorial Fellow.
l Birkhoff, G., "Lattice Theory," Am. Math. Soc. Colloq. Pub., 25, 48 (1940).
2 For the case of abelian groups with-operators from a group Q, this property is used

in Eilenberg, S., and MacLane, S., "Homology Theory of Spaces with Operators II,"
forthcoming in Trans. Am. Math. Soc.

3Eilenberg, S., and Steenrod, N., PRoC. NAT. AcAD. Sci., 31, 117-120 (1945). (The
writer has also profited by reading further unpublished work of these authors on this
subject.)

4 Pontrjagin, L., Topological Groups, Princeton, 1939. Weil, A., L'Integration dans
les groupes topologiques et ses applications, Paris, 1938.
aVeblen, O., and Young, J. W., Projective Geometry, Boston, 1910.
* Eilenberg, S., and MacLane, S., PRoc. NAT. ACAD. SCm., 28, 537-543 (1942); Trans.

Am. Math. Soc., 58, 231-294 (1945).
7 The formulation with bicategories does not yet indicate the duality between center

and factor commutator groups, and similar dual concepts of verbal and marginal sub-
groups; Hall, P., J. f. d. reine und angew. Math., 182, 156-157 (1940).

8 A careful treatment, emphasizing the equality approach, appears in the unjustly
neglected book by Haupt, O., Einfahrung in die Algebra, Leipzig, 1929.
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The most powerful method known for the study of the location of the
critical points of harmonic functions is the expression of the gradient of a
given harmonic function as the force in a field due to a suitable distribution
of matter.' Nevertheless simpler methods involving less machinery,
based on topological considerations involving symmetry, yield some sur-
prisingly deep results, as we wish to indicate in the present note. Our
principal result is
THEOREM 1. Denote by I1, and II2 the open upper and lower half-planes

respectively. Let u(x, y) be harmonic in a region R cut by the axis of reals,
and let the relktion

u(x, y) > u(x, -y) for (x, y) in II, (1)

hold whenever both (x, y) and (x, -y) lie in R. Then u(x, y) has no critical*
point in R on the axis of reals.

Alternate sufficient conditions that u(x, y) have no critical point in R on
the axis of reals are that R be bounded by a Jordan configuration B, that
u(x, y) be harmonic and bounded in R, continuous in R + B except perhaps
for afinite number of points, u(x, y) not identically equal to u(x, -y) in R, and
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